Celestial Reference Frames David Boboltz (Astrometry Dept., USNO)

- Introduction to reference systems/frames
- Past
 - FK5 optical observations of stars
- Present
 - ICRF radio observations of quasars
 - Other realizations (i.e. optical and infrared)
- Future
 - Improvements in the radio
 - Optical astrometric satellites

What is a Celestial Reference System?

- Excellent narrative on reference systems and frames
 - G. Kaplan (USNO)
 - http://aa.usno.navy.mil/faq/docs/ICRS_doc.html
- A Celestial Reference System
 - Specifies how a coordinate system will be formed.
 - Defines origin and fundamental planes/axes of the system.
 - Defines constants, models, and algorithms necessary to transform between observable quantities and the reference system.

What is a Celestial Reference Frame?

- Set of fiducial points on the sky along with their coordinates.
 - Serves as the practical realization of a reference system.
 - Theoretically only 2 points required.

• In practice:

- Catalog of precise positions and proper motions of galactic/extragalactic objects.
- As seen from solar-system barycenter at a specific epoch (usually J2000).
- Instantaneous coordinates measured as angular distances from the catalog's equator and origin of right ascension (RA and dec).
- Many objects to reduce systematic/zonal errors.

Astrometric Accuracy vs. Time

The FK5 System: ICRF Precursor

• Greatly improved version of earlier FK3, FK4 systems

- Improved star positions and proper motions with reduced systematics.
- Updated (IAU 1976) models for precession and nutation.
- Corrections to the zero-point of right ascension applied to agree with equinox of dynamical (planetary) system.

Catalog

- 1535 "classical" fundamental stars also in previous FK3, FK4 catalogs (Basic FK5, Fricke et al. 1988, VeARI, 35)
- 3117 "new" fundamental stars (FK5 Extension, Fricke et al. 1991, VeARI, 35)
- Mean position accuracy (mean epoch ~1950): ~20 mas
- Mean proper motion accuracy (mean epoch ~1950): ~0.8 mas/yr

VLBI Astrometric Milestones

• 1960's:

- Technique of Very Long Baseline Interferometry (VLBI) demonstrated.
- Used independent local oscillators to link radio telescopes not physically connected.

• 1970's:

VLBI position accuracies of ~20 mas achieved.

• Early 1980's:

- Dual S-band (2.3 GHz) and X-band (8.4 GHz)
 observations introduced to calibrate ionospheric propagation delay.
- Position accuracies < 0.5 mas achieved.

• Late 1980's

- Various astrometric catalogs (JPL, GSFC, NGS, USNO/NRL) produced.
- Catalog position accuracies <1 mas.
- Program to establish a global reference frame begun.

ICRF Timeline

 1988: The IAU sets up working groups to establish a new reference frame.

- 1991: The IAU establishes the theoretical basis for a new reference frame.
- 1994: The IAU defines the ensemble of fiducial points for a new reference frame as extragalactic objects.
- 1995: A sub-group of the IAU Working Group on Reference Frames is tasked to construct a new reference frame based on VLBI observations of quasars.
- 1997: The IAU establishes the ICRS and adopts the ICRF (IAU GA XXIII, Kyoto, Japan).
- 1998: January 1, the ICRF replaces the FK5 as the fundamental reference frame.

The ICRF

- Ma et al., 1998, AJ, 116, 516
- Observations
 - Aug. 1979 July 1995
 - 1.6 million group delay obs.
 - Simultaneous S-band (2.3 GHz) and X-band (8.4 GHz).
- 608 Extragalactic radio sources
 - 212 defining high astrometric quality.
 - 294 candidates intermediate quality need more observations.
 - 102 other excessive position variation, useful for frame densification and optical frame tie.
- Positional accuracies of 212 defining sources: ~250–1000 μas
- Accuracy of frame axes: 20 µas

Extensions to the ICRF

- ICRF-Extensions 1 and 2
 - Provide positions for 109 new sources not included in the 1998 definition of the ICRF.
 - Refine positions of "candidate" and "other" sources.
- ICRF Ext.-1 (Gambis, 1999, 1998 IERS Annual Report, Ch. VI)
 - Data: Dec. 1994 April 1999.
 - 0.6 million new obs. from 861 geodetic/astrometric VLBI sessions.
 - Improved positions for candidate & other sources.
 - 59 new sources added.
 - Positions and errors of 212 defining sources unchanged.
- ICRF Ext.-2 (Fey et al. 2004, AJ, 127, 358)
 - Data: May 1999 May 2002.
 - 1.2 million new obs. from 400 geodetic/astrometric sessions
 - 50 new sources added.
 - Positions and errors of 212 defining sources unchanged.

Limitations to the Current ICRF

• Troposphere

- Error: 150 250 μas.
- Mitigation: improved atmospheric models, WVRs.

• Data acquisition/Instrumentation

- Error: 50 100 μas.
- Mitigation: incremental improvements, system overhaul.

Source Structure

- Error: < 100 μas
- Source and time dependent.
- Mitigation: source filtering, source modeling, higher freq. obs.

ICRF Maintenance: Who's Responsible?

ICRF Maintenance/Research

Northern Hemisphere

- Geodetic/Astrometric Experiments (IVS):
 - Geodesy, astrometry.
- VLBA RDV Experiments (USNO, GSFC, NRAO):
 - Astrometry, source imaging/structure
- VLBA Calibrator Surveys (NRAO, GSFC):
 - ICRF densification, calibrators for astronomy.
- EVN Experiments (EVN, Bordeaux Observatory):
 - ICRF densification, calibrators for astronomy.
- K/Q-band VLBA (JPL, GSFC, USNO, NRAO)
 - High frequency (22/43 GHz)
 - Astrometry, source imaging/structure

Southern Hemisphere

- CRF Experiments (IVS):
 - Astrometry, ICRF densification
- LBA (ATNF, USNO):
 - Source imaging/structure

ICRF Research Activities at USNO

Periodic CRF solutions
 http://rorf.usno.navy.mil/solutions/crf2006a/

Radio Reference Frame Image Database (RRFID)
 http://rorf.usno.navy.mil/rrfid.shtml

Optical Realization of CRF

- Currently realized through the Hipparcos Celestial Reference Frame (HCRF)
 - Positions and proper motions of ~100,000 stars.
 - Binaries and problem stars vetted.
 - Perryman et al., 1997, A&A, 323, 49
- Catalog accuracy (fiducial points)
 - Median position error 9th mag. stars
 (mean epoch 1991.25): 0.7–0.9 mas
 - Median proper motion errors: ~1 mas/yr
 - − Current degradation: ~15–20 mas

HCRF Link to the ICRF

- Link established through observations of "radio" stars and quasars (Kovalesky et al. 1997, A&A, 323, 620)
 - Heavily weighted toward VLBI observations of 12 stars (Lestrade et al. 1995, A&A, 304,182)
 - Alignment: 0.6 mas at mean HCRF epoch (1991.25).
 - Non-rotating to within 0.25 mas/yr wrt ICRF.
 - − Current degradation: ~4 mas.
- Maintenance/improvement of the link.
 - Optical observations of ICRF sources
 - Astrometry on the HCRF via Tycho-2 and UCAC stars.
 - 172 sources: mean std. error ~30 mas (Assafin et al. 2003, AJ, 125, 2728)
 - 18 sources: mean std. error 15–20 mas (Zacharias & Zacharias, ASPC, 338, 184)

Densification of the Hipparcos Frame

• Tycho, Tycho 2

- ~2.5 million stars
- Hipparcos star mapper + ground-based observations
- Position accuracy: 9th mag. ~20 mas, 12th mag. >100 mas, J2000
- Proper motion accuracy: 1–3 mas/yr

Other catalogs

- Zacharias talk this meeting.

Name of	****	handna	number		A	release	
	mag.	bandpass		pos.err.	type		comment
catalog	range	(approx.)	of stars	(mas)		year	
ACR-2	10-17.5	R	1.2 M	26-60	S	1999	equator, areas
M2000	- 17	V	2.3 M	35-100	S	2001	+11 to +18 decl.
CMC12	9 - 17	r³	6.3 M	36-113	S	2002	-3 to $+3$ decl.
CMC13	9 - 17	r'	many	35-100	S	2003	+3 to $+30$ decl.
UCAC1	8 – 16	579-643	27 M	25-70	(A)	2000	−90 to −15 decl.
UCAC2	8 - 16		48 M	20 - 70	(A)	2003	-90 to +40 decl.
UCAC3	8 - 16	***	70 M	20-70	A	2006	all sky
GSC-2.2	12 - 20	B,V	456 M	300	G	2002	posit., photom.
USNO-A2	12 - 20		526 M	200	G	2001	posit., photom.
USNO-B	12 - 20	***	1000 M	200	G	2002	incl. proper motions
SDSS	15 - 23	u,b,v,r,z	many	50-150	G	2003	about 5000 sq.deg
2MASS		J,K,H	471 M	60-100	G	2003	infrared survey
NOMAD	-1 – 20	B,V,R,J,H,K	1100 M	10-200	A	2005	merged data set

Extension to the Infrared Frame

• 2 Micron All Sky Survey Project (2MASS)

- 2 identical 1.3-m telescopes north and south
- − ~470 million point sources, ~1.6 million extended
- IR photometry: J, H, K bands
- Position accuracy: 60–100 mas
- Astrometry on the HCRF linked via Tycho-2 stars.

Comparison with UCAC/UCAC2 optical catalogs

Systematic position differences <20 mas

Future Celestial Reference Frames

• Future VLBI improvements

- Near term next 5-10 years.
- Focused primarily on geodesy.
- Astrometry a secondary consideration.

Astrometric satellite missions

- Far term 10-20 years.
- Accurate astrometry is primary goal.
- Will likely move the ICRF to the optical.

Improvements in the Radio

Current VLBI network:

- Technology form 1970's and 1980's.
- Heterogeneous network of antennas.
- Developed in many cases for astronomy.

• IVS - WG3 tasked, VLBI 2010 report

 Primary geodetic goal: long term accuracy of 1 mm on global baselines.

• Future VLBI network:

- Homogeneous array of many small agile telescopes.
- Higher (>1 GHz) bandwidth.
- New feeds, front-ends, back-ends, frequency standards (reduced instrumental errors).
- Increased observation density (troposphere, source structure).
- Higher frequencies, X/Ka vs. current S/X (source structure).
- Improved models (troposphere, source structure).

GAIA Mission

- Launch: Dec. 2011
- Operations: 5 years, continuous scanning
- Catalog: 2020
- Number of objects: $\sim 10^9$, (500,000 extragalactic)
- Magnitude Range: 7th 20th m_y
- Accuracy
 - -10^{th} mag. ~ 7 μas
 - $-15^{th} \text{ mag.} \sim 20-25 \text{ } \mu \text{as}$
 - $-20^{th} \text{ mag.} \sim 200-300 \text{ } \mu\text{as}$
- Will likely define the next generation ICRF.
 - 10,000 extragalactic defining sources.
 - Residual frame rotation $0.5 \,\mu as/yr$.

SIM PlanetQuest Mission

- Launch: 2015
- Operations: 5 years, pointed interferometer
- Catalog: 2021
- Number of objects: $\sim 10^5$ (50-100 extragalactic)
- Magnitude Range: $< 20^{th} \text{ m}_{y}$
- Position Accuracy:
 - 4 μas wide angle (1,300 grid stars)
 - 1 μas narrow angle
 - Quasars 15-20 μas
- Stellar frame axes: 4 μas
- Residual frame rotation: 4 μas/yr
- USNO involvement
 - Key Science Project: Astrophysics of Reference Frame Tie Objects, K. J. Johnston, P.I.
 - Key Science Project: MASSIF, T. Henry (GSU), P.I.
 - Input catalog and parallel grid star reduction.

